新的去噪方法

选取3X3噪声点

中心点为C,周围八个点分别是A1~A8

处理中心点C

对九个点进行不考虑位置的区域划分,再去掉中心点C,对其余八个点进行不考虑位置的划分,若两次划分有明显的变化,那么说明中心点为噪声点。

如果中心点C为噪声,那么就在八邻域中找到与中心点最为接近的点的值,赋给中心点C

处理八邻域

将九个点全排列,分成两个区域,然后搜索每个点,如果该点没有与所在区域的其他点相邻,那么就将它的噪声指数加一

效果

img

下面尝试用opencv中的canny算子检测噪声图和处理图(去噪后)的效果:

img

img

代码示例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
python# python3.8
# utf-8
"""
1.找出噪声点:
新划分方法
标记次数
2.修改
找最接近的未标记过的点
"""
import cv2 as cv
import numpy as np

threshold = 1


class PixelChannel:
def __init__(self, channel, noise, row, col):
self.noise = noise
self.channel = channel
self.row = row
self.col = col


class Part:
def __init__(self, x, y, area):
self.x = x
self.y = y
self.area = area


# 建立像素通道类
def create_pixel_channel(img_channel):
(row, col) = img_channel.shape
result = PixelChannel(img_channel, noise_check(img_channel), row, col)
return result


# 一维数组映射到二维
def _1d_2_2d(x):
if x == 0:
return 0, 0
elif x == 1:
return 0, 1
elif x == 2:
return 0, 2
elif x == 3:
return 1, 2
elif x == 4:
return 2, 2
elif x == 5:
return 2, 1
elif x == 6:
return 2, 0
elif x == 7:
return 1, 0
elif x == 8:
return 1, 1


# 二维数组映射到一维
def _2d_2_1d(x, y):
if x == 0 and y == 0:
return int(0)
elif x == 0 and y == 1:
return int(1)
elif x == 0 and y == 2:
return int(2)
elif x == 1 and y == 2:
return int(3)
elif x == 2 and y == 2:
return int(4)
elif x == 2 and y == 1:
return int(5)
elif x == 2 and y == 0:
return int(6)
elif x == 1 and y == 0:
return int(7)
elif x == 1 and y == 1:
return int(8)


def division1(_3x3):
result = [0] * 9
p1 = [_3x3[0][0], _3x3[0][1], _3x3[0][2], _3x3[1][2], _3x3[2][2], _3x3[2][1], _3x3[2][0],
_3x3[1][0], _3x3[1][1]]
p = sorted(p1)
q = [abs(int(p[0]) - int(p[1])), abs(int(p[1]) - int(p[2])), abs(int(p[2]) - int(p[3])), abs(int(p[3]) - int(p[4])),
abs(int(p[4]) - int(p[5])), abs(int(p[5]) - int(p[6])), abs(int(p[6]) - int(p[7])), abs(int(p[7]) - int(p[8]))]
# 判断区分度
if max(q) < 10:
return result, False
max_index = q.index(max(q))
for i in range(0, max_index + 1):
result[p1.index(p[i])] = 1
for i in range(9):
if result[i] != 1:
result[i] = 2
return result, True


# 去除del_num号元素,del_num:0~8
def division2(_3x3, del_num):
p1 = [_3x3[0][0], _3x3[0][1], _3x3[0][2], _3x3[1][2], _3x3[2][2], _3x3[2][1], _3x3[2][0],
_3x3[1][0], _3x3[1][1]]
p2 = []
for i in range(9):
if i == del_num:
continue
p2.append(p1[i])
result = [0] * 9

p = sorted(p2)
q = [abs(int(p[0]) - int(p[1])), abs(int(p[1]) - int(p[2])), abs(int(p[2]) - int(p[3])), abs(int(p[3]) - int(p[4])),
abs(int(p[4]) - int(p[5])), abs(int(p[5]) - int(p[6])), abs(int(p[6]) - p[7])]
# 判断区分度
if max(q) < 10:
return result, False
max_index = q.index(max(q))
for i in range(0, max_index + 1):
result[p1.index(p[i])] = 1
for i in range(8):
if result[i] != 1:
result[i] = 2
result[del_num] = 0
return result, True


# 搜索八邻域像素点是否合理 num:0~7
def check_8area(_8area, part, num):
x, y = _1d_2_2d(num)
if 0 <= x-1 <= 2 and 0 <= y-1 <= 2 and part[_2d_2_1d(x-1, y-1)] == part[num]:
pass
elif 0 <= x-1 <= 2 and 0 <= y <= 2 and part[_2d_2_1d(x-1, y)] == part[num]:
pass
elif 0 <= x-1 <= 2 and 0 <= y+1 <= 2 and part[_2d_2_1d(x-1, y+1)] == part[num]:
pass
elif 0 <= x <= 2 and 0 <= y+1 <= 2 and part[_2d_2_1d(x, y+1)] == part[num]:
pass
elif 0 <= x+1 <= 2 and 0 <= y+1 <= 2 and part[_2d_2_1d(x+1, y+1)] == part[num]:
pass
elif 0 <= x+1 <= 2 and 0 <= y <= 2 and part[_2d_2_1d(x+1, y)] == part[num]:
pass
elif 0 <= x+1 <= 2 and 0 <= y-1 <= 2 and part[_2d_2_1d(x+1, y-1)] == part[num]:
pass
elif 0 <= x <= 2 and 0 <= y-1 <= 2 and part[_2d_2_1d(x, y-1)] == part[num]:
pass
else:
return False
return True


def noise_check(img_channel):
(row, col) = img_channel.shape
result = [[0] * col for i in range(row)]
for i in range(1, row - 1):
for j in range(1, col - 1):
_3X3 = [[0] * 3 for i in range(3)]
_3X3[0][0] = img_channel[i - 1][j - 1]
_3X3[0][1] = img_channel[i - 1][j]
_3X3[0][2] = img_channel[i - 1][j + 1]
_3X3[1][2] = img_channel[i][j + 1]
_3X3[2][2] = img_channel[i + 1][j + 1]
_3X3[2][1] = img_channel[i + 1][j]
_3X3[2][0] = img_channel[i + 1][j - 1]
_3X3[1][0] = img_channel[i][j - 1]
_3X3[1][1] = img_channel[i][j]
# 不考虑位置
part1, flag1 = division1(_3X3)
# 如果在不去除点的情况下,不需要划分,那么就跳过
if not flag1:
continue
# 判断中心点是否合群
part_del_c, flag_del_c = division2(_3X3, 8)
# 如果去掉中心点后可划分,那么比较两种划分
if flag_del_c:
cnt = 0
for m in range(9):
if part_del_c[m] != 0 and part1[m] != part_del_c[m]:
cnt += 1
if cnt >= 1:
x, y = _1d_2_2d(9-1)
result[i - 1 + x][j - 1 + y] += 1
# 如果不可划分,那么中心点为可能的噪声
else:
x, y = _1d_2_2d(9 - 1)
result[i - 1 + x][j - 1 + y] += 1
# 搜索其余八邻域像素点是否合理
for k in range(8):
if not check_8area(_3X3, part1, k):
x, y = _1d_2_2d(k)
result[i - 1 + x][j - 1 + y] += 1
return result


# 不考虑缩小二分之一图像
def mark(pixel_channel):
for i in range(pixel_channel.row):
for j in range(pixel_channel.col):
if pixel_channel.noise[i][j] >= threshold:
pixel_channel.channel[i][j] = find_best(pixel_channel, i, j)
return pixel_channel


# 找到最合适的值
def find_best(pixel_channel, x, y):
p = pixel_channel.channel[x][y]
# 建立领域列表
neighborhood = []
if pixel_channel.row > x - 1 >= 0 and pixel_channel.col > y - 1 >= 0 and pixel_channel.noise[x - 1][y - 1] < threshold:
neighborhood.append(pixel_channel.channel[x - 1][y - 1])
if pixel_channel.row > x - 1 >= 0 and pixel_channel.col > y >= 0 and pixel_channel.noise[x - 1][y] < threshold:
neighborhood.append(pixel_channel.channel[x - 1][y])
if pixel_channel.row > x - 1 >= 0 and pixel_channel.col > y + 1 >= 0 and pixel_channel.noise[x - 1][y + 1] < threshold:
neighborhood.append(pixel_channel.channel[x - 1][y + 1])
if pixel_channel.row > x >= 0 and pixel_channel.col > y + 1 >= 0 and pixel_channel.noise[x][y + 1] < threshold:
neighborhood.append(pixel_channel.channel[x][y + 1])
if pixel_channel.row > x + 1 >= 0 and pixel_channel.col > y + 1 >= 0 and pixel_channel.noise[x + 1][y + 1] < threshold:
neighborhood.append(pixel_channel.channel[x + 1][y + 1])
if pixel_channel.row > x + 1 >= 0 and pixel_channel.col > y >= 0 and pixel_channel.noise[x + 1][y] < threshold:
neighborhood.append(pixel_channel.channel[x + 1][y])
if pixel_channel.row > x + 1 >= 0 and pixel_channel.col > y - 1 >= 0 and pixel_channel.noise[x + 1][y - 1] < threshold:
neighborhood.append(pixel_channel.channel[x + 1][y - 1])
if pixel_channel.row > x >= 0 and pixel_channel.col > y - 1 >= 0 and pixel_channel.noise[x][y - 1] < threshold:
neighborhood.append(pixel_channel.channel[x][y - 1])

# 搜索与给定点最接近的非噪声点
# 建立差值列表
d = []
for i in range(len(neighborhood)):
d.append(abs(int(neighborhood[i]) - int(p)))
if len(d) == 0:
return p
min_index = d.index(min(d))

return neighborhood[min_index]


# 考虑缩小二分之一图像
def repair(pixel_channel, half_channel):
# 左上角
for i in range(half_channel[0].row):
for j in range(half_channel[0].col):
if half_channel[0].noise[i][j] >= threshold:
pixel_channel.noise[i * 2][j * 2] += half_channel[0].noise[i][j]

# 右上角
for i in range(half_channel[1].row):
for j in range(half_channel[1].col):
if half_channel[1].noise[i][j] >= threshold:
pixel_channel.noise[i * 2][j * 2 + 1] += half_channel[1].noise[i][j]

# 左下角
for i in range(half_channel[2].row):
for j in range(half_channel[2].col):
if half_channel[2].noise[i][j] >= threshold:
pixel_channel.noise[i * 2 + 1][j * 2] += half_channel[2].noise[i][j]

# 右下角
for i in range(half_channel[3].row):
for j in range(half_channel[3].col):
if half_channel[3].noise[i][j] >= threshold:
pixel_channel.noise[i * 2 + 1][j * 2 + 1] += half_channel[3].noise[i][j]

for i in range(pixel_channel.row):
for j in range(pixel_channel.col):
if pixel_channel.noise[i][j] >= threshold:
pixel_channel.channel[i][j] = find_best(pixel_channel, i, j)

return pixel_channel


def main():
# 图像地址
img_address = "img_noise.png"
# 以BGR方式读入图像
img = cv.imread(img_address, 1)
cv.imshow("img_noise.png", img)
# 通道分离
channel_b, channel_g, channel_r = cv.split(img)
# 建立像素通道类
b = create_pixel_channel(channel_b)
g = create_pixel_channel(channel_g)
r = create_pixel_channel(channel_r)
# 缩小二分之一
# half_b = [half_1(b), half_2(b), half_3(b), half_4(b)]
# half_g = [half_1(g), half_2(g), half_3(g), half_4(g)]
# half_r = [half_1(r), half_2(r), half_3(r), half_4(r)]

fp = open('b.noise.csv', 'w')
for i in range(b.row):
for j in range(b.col):
print(b.noise[i][j], file=fp, end='')
print(",", file=fp, end='')
print("", file=fp)

fp = open('b.pixel.csv', 'w')
for i in range(b.row):
for j in range(b.col):
print(b.channel[i][j], file=fp, end='')
print(",", file=fp, end='')
print("", file=fp)

# 不考虑二分之一图像
new_img = cv.merge((mark(b).channel, mark(g).channel, mark(r).channel))

# 考虑二分之一图像
# new_img = cv.merge((repair(b, half_b).channel, repair(g, half_g).channel, repair(r, half_r).channel))

cv.imwrite("denoised_img.png", new_img)
cv.imshow("denoised_img.png", new_img)
cv.waitKey()
cv.destroyAllWindows()


if __name__ == '__main__':
main()