1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
|
""" 1.将图片缩小二分之一: 分别取左上角、右上角、左下角、右下角的像素点 生成四个子图 2.找出噪声点: 划分方法一 划分方法二 标记次数 3.修改 找最接近的未标记过的点 """ import cv2 as cv import numpy as np
threshold = 4
class PixelChannel: def __init__(self, channel, noise, row, col): self.noise = noise self.channel = channel self.row = row self.col = col
class Part: def __init__(self, x, y, area): self.x = x self.y = y self.area = area
""" # 将图像缩小到一半 def half(pixel_channel): row = pixel_channel.row col = pixel_channel.col half_row = row // 2 half_col = col // 2 channel = np.zeros((half_row + 1, half_col + 1), dtype=type(pixel_channel.channel)) for i in range(0, row, 2): for j in range(0, col, 2): channel[i // 2][j // 2] = pixel_channel.channel[i][j] result = PixelChannel(channel, noise_check(channel), half_row, half_col) return result """
def half_1(pixel_channel): row = pixel_channel.row col = pixel_channel.col half_row = row // 2 half_col = col // 2 channel = np.zeros((half_row + 1, half_col + 1), dtype=type(pixel_channel.channel)) for i in range(0, row, 2): for j in range(0, col, 2): channel[i // 2][j // 2] = pixel_channel.channel[i][j] result = PixelChannel(channel, noise_check(channel), half_row, half_col) return result
def half_2(pixel_channel): row = pixel_channel.row col = pixel_channel.col half_row = row // 2 half_col = col // 2 channel = np.zeros((half_row + 1, half_col + 1), dtype=type(pixel_channel.channel)) for i in range(0, row, 2): for j in range(1, col, 2): channel[i // 2][j // 2] = pixel_channel.channel[i][j] result = PixelChannel(channel, noise_check(channel), half_row, half_col) return result
def half_3(pixel_channel): row = pixel_channel.row col = pixel_channel.col half_row = row // 2 half_col = col // 2 channel = np.zeros((half_row + 1, half_col + 1), dtype=type(pixel_channel.channel)) for i in range(1, row, 2): for j in range(0, col, 2): channel[i // 2][j // 2] = pixel_channel.channel[i][j] result = PixelChannel(channel, noise_check(channel), half_row, half_col) return result
def half_4(pixel_channel): row = pixel_channel.row col = pixel_channel.col half_row = row // 2 half_col = col // 2 channel = np.zeros((half_row + 1, half_col + 1), dtype=type(pixel_channel.channel)) for i in range(1, row, 2): for j in range(1, col, 2): channel[i // 2][j // 2] = pixel_channel.channel[i][j] result = PixelChannel(channel, noise_check(channel), half_row, half_col) return result
def create_pixel_channel(img_channel): (row, col) = img_channel.shape result = PixelChannel(img_channel, noise_check(img_channel), row, col) return result
def division1(_8area): result = [0] * 8 p1 = [_8area[0][0], _8area[0][1], _8area[0][2], _8area[1][2], _8area[2][2], _8area[2][1], _8area[2][0], _8area[1][0]] p = sorted(p1) q = [abs(int(p[0]) - int(p[1])), abs(int(p[1]) - int(p[2])), abs(int(p[2]) - int(p[3])), abs(int(p[3]) - int(p[4])), abs(int(p[4]) - int(p[5])), abs(int(p[5]) - int(p[6])), abs(int(p[6]) - int(p[7]))] if max(q) < 10: return result, False max_index = q.index(max(q)) for i in range(0, max_index + 1): result[p1.index(p[i])] = 1 for i in range(8): if result[i] != 1: result[i] = 2 """ min_index = 0 for i in range(1, 8): if p[i] < p[min_index]: min_index = i max_index1 = min_index for i in range(1, 8): if p[i] > p[max_index1]: max_index1 = i max_index2 = min_index for i in range(1, 8): if i != max_index1 and p[i] > p[max_index2]: max_index2 = i max_index3 = min_index for i in range(1, 8): if i != max_index1 and i != max_index2 and p[i] > p[max_index3]: max_index3 = i max_index4 = min_index for i in range(1, 8): if i != max_index1 and i != max_index2 and i != max_index3 and p[i] > p[max_index4]: max_index4 = i # 将较小的的四个标记为1区域,较大区域标记为2 result[max_index1] = 2 result[max_index2] = 2 result[max_index3] = 2 result[max_index4] = 2 for i in range(8): if result[i] != 2: result[i] = 1 """ return result, True
def division2(_8area): result = [0] * 8 p = [_8area[0][0], _8area[0][1], _8area[0][2], _8area[1][2], _8area[2][2], _8area[2][1], _8area[2][0], _8area[1][0]] d = [int(p[0]) - int(p[1]), int(p[1]) - int(p[2]), int(p[2]) - int(p[3]), int(p[3]) - int(p[4]), int(p[4]) - int(p[5]), int(p[5]) - int(p[6]), int(p[6]) - int(p[7]), int(p[7]) - int(p[0])] max_index = 0 min_index = 0 for i in range(1, 8): if d[i] > d[max_index]: max_index = i if d[i] < d[min_index]: min_index = i if max_index == min_index: pass elif max_index > min_index: for i in range(0, min_index + 1): result[i] = 1 for i in range(min_index + 1, max_index + 1): result[i] = 2 if max_index < 7: for i in range(max_index + 1, 8): result[i] = 1 elif max_index < min_index: for i in range(0, max_index + 1): result[i] = 2 for i in range(max_index + 1, min_index + 1): result[i] = 1 if min_index < 7: for i in range(min_index + 1, 8): result[i] = 2 max1 = 0 for i in range(8): if result[i] == 1 and p[i] > max1: max1 = p[i] min2 = 0 for i in range(8): if result[i] == 2 and p[i] < min2: min2 = p[i] if max1 - min2 < 10: return result, False else: return result, True
def _1d_2_2d(x): if x == 0: return 0, 0 elif x == 1: return 0, 1 elif x == 2: return 0, 2 elif x == 3: return 1, 2 elif x == 4: return 2, 2 elif x == 5: return 2, 1 elif x == 6: return 2, 0 elif x == 7: return 1, 0
def special_check(_8area): p = [_8area[0][0], _8area[0][1], _8area[0][2], _8area[1][2], _8area[2][2], _8area[2][1], _8area[2][0], _8area[1][0]] p_sum = int(p[0]) + int(p[1]) + int(p[2]) + int(p[3]) + int(p[4]) + int(p[5]) + int(p[6]) + int(p[7]) max_differ = 0 max_index = 0 for i in range(8): if abs(int(p[i]) - (p_sum - int(p[i])) // 7) > max_differ: max_differ = abs(int(p[i]) - (p_sum - int(p[i])) // 7) max_index = i if max_differ > 4: return _1d_2_2d(max_index) else: return -1, -1
def noise_check(img_channel): (row, col) = img_channel.shape result = [[0] * col for i in range(row)] for i in range(1, row - 1): for j in range(1, col - 1): _8_area = [[0] * 3 for i in range(3)] _8_area[0][0] = img_channel[i - 1][j - 1] _8_area[0][1] = img_channel[i - 1][j] _8_area[0][2] = img_channel[i - 1][j + 1] _8_area[1][2] = img_channel[i][j + 1] _8_area[2][2] = img_channel[i + 1][j + 1] _8_area[2][1] = img_channel[i + 1][j] _8_area[2][0] = img_channel[i + 1][j - 1] _8_area[1][0] = img_channel[i][j - 1] part1, flag1 = division1(_8_area) part2, flag2 = division2(_8_area) if flag1 == False or flag2 == False: continue sx, sy = special_check(_8_area) if sx != -1: result[i - 1 + sx][j - 1 + sy] += 1 for k in range(8): if part1[k] != part2[k]: x, y = _1d_2_2d(k) result[i - 1 + x][j - 1 + y] += 1 return result
""" # 不考虑缩小二分之一图像 def mark(pixel_channel): for i in range(pixel_channel.row): for j in range(pixel_channel.col): if pixel_channel.noise[i][j] >= threshold: pixel_channel.channel[i][j] = 0 return pixel_channel """
def find_best(pixel_channel, x, y): p = pixel_channel.channel[x][y] neighborhood = [] if pixel_channel.row > x - 1 >= 0 and pixel_channel.col > y - 1 >= 0 and pixel_channel.noise[x - 1][ y - 1] < threshold: neighborhood.append(pixel_channel.channel[x - 1][y - 1]) if pixel_channel.row > x - 1 >= 0 and pixel_channel.col > y >= 0 and pixel_channel.noise[x - 1][y] < threshold: neighborhood.append(pixel_channel.channel[x - 1][y]) if pixel_channel.row > x - 1 >= 0 and pixel_channel.col > y + 1 >= 0 and pixel_channel.noise[x - 1][ y + 1] < threshold: neighborhood.append(pixel_channel.channel[x - 1][y + 1]) if pixel_channel.row > x >= 0 and pixel_channel.col > y + 1 >= 0 and pixel_channel.noise[x][y + 1] < threshold: neighborhood.append(pixel_channel.channel[x][y + 1]) if pixel_channel.row > x + 1 >= 0 and pixel_channel.col > y + 1 >= 0 and pixel_channel.noise[x + 1][ y + 1] < threshold: neighborhood.append(pixel_channel.channel[x + 1][y + 1]) if pixel_channel.row > x + 1 >= 0 and pixel_channel.col > y >= 0 and pixel_channel.noise[x + 1][y] < threshold: neighborhood.append(pixel_channel.channel[x + 1][y]) if pixel_channel.row > x + 1 >= 0 and pixel_channel.col > y - 1 >= 0 and pixel_channel.noise[x + 1][ y - 1] < threshold: neighborhood.append(pixel_channel.channel[x + 1][y - 1]) if pixel_channel.row > x >= 0 and pixel_channel.col > y - 1 >= 0 and pixel_channel.noise[x][y - 1] < threshold: neighborhood.append(pixel_channel.channel[x][y - 1])
d = [] for i in range(len(neighborhood)): d.append(abs(int(neighborhood[i]) - int(p))) if len(d) == 0: return p min_index = d.index(min(d))
return neighborhood[min_index]
def repair(pixel_channel, half_channel): for i in range(half_channel[0].row): for j in range(half_channel[0].col): if half_channel[0].noise[i][j] >= threshold: pixel_channel.noise[i * 2][j * 2] += half_channel[0].noise[i][j]
for i in range(half_channel[1].row): for j in range(half_channel[1].col): if half_channel[1].noise[i][j] >= threshold: pixel_channel.noise[i * 2][j * 2 + 1] += half_channel[1].noise[i][j]
for i in range(half_channel[2].row): for j in range(half_channel[2].col): if half_channel[2].noise[i][j] >= threshold: pixel_channel.noise[i * 2 + 1][j * 2] += half_channel[2].noise[i][j]
for i in range(half_channel[3].row): for j in range(half_channel[3].col): if half_channel[3].noise[i][j] >= threshold: pixel_channel.noise[i * 2 + 1][j * 2 + 1] += half_channel[3].noise[i][j]
for i in range(pixel_channel.row): for j in range(pixel_channel.col): if pixel_channel.noise[i][j] >= threshold: pixel_channel.channel[i][j] = find_best(pixel_channel, i, j)
return pixel_channel
def main(): img_address = "img_noise.png" img = cv.imread(img_address, 1) cv.imshow("img_noise.png", img) channel_b, channel_g, channel_r = cv.split(img) b = create_pixel_channel(channel_b) g = create_pixel_channel(channel_g) r = create_pixel_channel(channel_r) half_b = [half_1(b), half_2(b), half_3(b), half_4(b)] half_g = [half_1(g), half_2(g), half_3(g), half_4(g)] half_r = [half_1(r), half_2(r), half_3(r), half_4(r)]
""" fp = open('half_b.noise.csv', 'w') for i in range(half_b.row): for j in range(half_b.col): print(half_b.noise[i][j], file=fp, end='') print(",", file=fp, end='') print("", file=fp)
fp = open('half_b.pixel.csv', 'w') for i in range(half_b.row): for j in range(half_b.col): print(half_b.channel[i][j], file=fp, end='') print(",", file=fp, end='') print("", file=fp) """
new_img = cv.merge((repair(b, half_b).channel, repair(g, half_g).channel, repair(r, half_r).channel))
cv.imwrite("denoised_img.png", new_img) cv.imshow("denoised_img.png", new_img) cv.waitKey() cv.destroyAllWindows()
if __name__ == '__main__': main()
|