待解决问题

多个噪声点在一起时,难以消除

所以利用缩小二分之一的子图来检测噪声

如图为图像素材:

img_noise

代码示例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
# python3.8
# utf-8
"""
1.将图片缩小二分之一:
分别取左上角、右上角、左下角、右下角的像素点
生成四个子图
2.找出噪声点:
划分方法一
划分方法二
标记次数
3.修改
找最接近的未标记过的点
"""
import cv2 as cv
import numpy as np

threshold = 4


class PixelChannel:
def __init__(self, channel, noise, row, col):
self.noise = noise
self.channel = channel
self.row = row
self.col = col


class Part:
def __init__(self, x, y, area):
self.x = x
self.y = y
self.area = area


"""
# 将图像缩小到一半
def half(pixel_channel):
row = pixel_channel.row
col = pixel_channel.col
half_row = row // 2
half_col = col // 2
channel = np.zeros((half_row + 1, half_col + 1), dtype=type(pixel_channel.channel))
for i in range(0, row, 2):
for j in range(0, col, 2):
channel[i // 2][j // 2] = pixel_channel.channel[i][j]
result = PixelChannel(channel, noise_check(channel), half_row, half_col)
return result
"""


# 取左上角
def half_1(pixel_channel):
row = pixel_channel.row
col = pixel_channel.col
half_row = row // 2
half_col = col // 2
channel = np.zeros((half_row + 1, half_col + 1), dtype=type(pixel_channel.channel))
for i in range(0, row, 2):
for j in range(0, col, 2):
channel[i // 2][j // 2] = pixel_channel.channel[i][j]
result = PixelChannel(channel, noise_check(channel), half_row, half_col)
return result


# 取右上角
def half_2(pixel_channel):
row = pixel_channel.row
col = pixel_channel.col
half_row = row // 2
half_col = col // 2
channel = np.zeros((half_row + 1, half_col + 1), dtype=type(pixel_channel.channel))
for i in range(0, row, 2):
for j in range(1, col, 2):
channel[i // 2][j // 2] = pixel_channel.channel[i][j]
result = PixelChannel(channel, noise_check(channel), half_row, half_col)
return result


# 取左下角
def half_3(pixel_channel):
row = pixel_channel.row
col = pixel_channel.col
half_row = row // 2
half_col = col // 2
channel = np.zeros((half_row + 1, half_col + 1), dtype=type(pixel_channel.channel))
for i in range(1, row, 2):
for j in range(0, col, 2):
channel[i // 2][j // 2] = pixel_channel.channel[i][j]
result = PixelChannel(channel, noise_check(channel), half_row, half_col)
return result


# 取右下角
def half_4(pixel_channel):
row = pixel_channel.row
col = pixel_channel.col
half_row = row // 2
half_col = col // 2
channel = np.zeros((half_row + 1, half_col + 1), dtype=type(pixel_channel.channel))
for i in range(1, row, 2):
for j in range(1, col, 2):
channel[i // 2][j // 2] = pixel_channel.channel[i][j]
result = PixelChannel(channel, noise_check(channel), half_row, half_col)
return result


# 建立像素通道类
def create_pixel_channel(img_channel):
(row, col) = img_channel.shape
result = PixelChannel(img_channel, noise_check(img_channel), row, col)
return result


# 不考虑位置
def division1(_8area):
result = [0] * 8
p1 = [_8area[0][0], _8area[0][1], _8area[0][2], _8area[1][2], _8area[2][2], _8area[2][1], _8area[2][0],
_8area[1][0]]
p = sorted(p1)
q = [abs(int(p[0]) - int(p[1])), abs(int(p[1]) - int(p[2])), abs(int(p[2]) - int(p[3])), abs(int(p[3]) - int(p[4])),
abs(int(p[4]) - int(p[5])), abs(int(p[5]) - int(p[6])), abs(int(p[6]) - int(p[7]))]
# 判断区分度
if max(q) < 10:
return result, False
max_index = q.index(max(q))
for i in range(0, max_index + 1):
result[p1.index(p[i])] = 1
for i in range(8):
if result[i] != 1:
result[i] = 2
"""
min_index = 0
for i in range(1, 8):
if p[i] < p[min_index]:
min_index = i
max_index1 = min_index
for i in range(1, 8):
if p[i] > p[max_index1]:
max_index1 = i
max_index2 = min_index
for i in range(1, 8):
if i != max_index1 and p[i] > p[max_index2]:
max_index2 = i
max_index3 = min_index
for i in range(1, 8):
if i != max_index1 and i != max_index2 and p[i] > p[max_index3]:
max_index3 = i
max_index4 = min_index
for i in range(1, 8):
if i != max_index1 and i != max_index2 and i != max_index3 and p[i] > p[max_index4]:
max_index4 = i
# 将较小的的四个标记为1区域,较大区域标记为2
result[max_index1] = 2
result[max_index2] = 2
result[max_index3] = 2
result[max_index4] = 2
for i in range(8):
if result[i] != 2:
result[i] = 1
"""
return result, True


# 考虑位置
def division2(_8area):
result = [0] * 8
p = [_8area[0][0], _8area[0][1], _8area[0][2], _8area[1][2],
_8area[2][2], _8area[2][1], _8area[2][0], _8area[1][0]]
d = [int(p[0]) - int(p[1]), int(p[1]) - int(p[2]), int(p[2]) - int(p[3]), int(p[3]) - int(p[4]),
int(p[4]) - int(p[5]), int(p[5]) - int(p[6]), int(p[6]) - int(p[7]), int(p[7]) - int(p[0])]
max_index = 0
min_index = 0
for i in range(1, 8):
if d[i] > d[max_index]:
max_index = i
if d[i] < d[min_index]:
min_index = i
if max_index == min_index:
pass
elif max_index > min_index:
for i in range(0, min_index + 1):
result[i] = 1
for i in range(min_index + 1, max_index + 1):
result[i] = 2
if max_index < 7:
for i in range(max_index + 1, 8):
result[i] = 1
elif max_index < min_index:
for i in range(0, max_index + 1):
result[i] = 2
for i in range(max_index + 1, min_index + 1):
result[i] = 1
if min_index < 7:
for i in range(min_index + 1, 8):
result[i] = 2
# 判断区分度
max1 = 0
for i in range(8):
if result[i] == 1 and p[i] > max1:
max1 = p[i]
min2 = 0
for i in range(8):
if result[i] == 2 and p[i] < min2:
min2 = p[i]
if max1 - min2 < 10:
return result, False
else:
return result, True


# 一维数组映射到二维
def _1d_2_2d(x):
if x == 0:
return 0, 0
elif x == 1:
return 0, 1
elif x == 2:
return 0, 2
elif x == 3:
return 1, 2
elif x == 4:
return 2, 2
elif x == 5:
return 2, 1
elif x == 6:
return 2, 0
elif x == 7:
return 1, 0


# 特殊值处理
def special_check(_8area):
p = [_8area[0][0], _8area[0][1], _8area[0][2], _8area[1][2],
_8area[2][2], _8area[2][1], _8area[2][0], _8area[1][0]]
p_sum = int(p[0]) + int(p[1]) + int(p[2]) + int(p[3]) + int(p[4]) + int(p[5]) + int(p[6]) + int(p[7])
max_differ = 0
max_index = 0
for i in range(8):
if abs(int(p[i]) - (p_sum - int(p[i])) // 7) > max_differ:
max_differ = abs(int(p[i]) - (p_sum - int(p[i])) // 7)
max_index = i
if max_differ > 4:
return _1d_2_2d(max_index)
else:
return -1, -1


def noise_check(img_channel):
(row, col) = img_channel.shape
result = [[0] * col for i in range(row)]
for i in range(1, row - 1):
for j in range(1, col - 1):
# _8_area = type(img_channel)
_8_area = [[0] * 3 for i in range(3)]
_8_area[0][0] = img_channel[i - 1][j - 1]
_8_area[0][1] = img_channel[i - 1][j]
_8_area[0][2] = img_channel[i - 1][j + 1]
_8_area[1][2] = img_channel[i][j + 1]
_8_area[2][2] = img_channel[i + 1][j + 1]
_8_area[2][1] = img_channel[i + 1][j]
_8_area[2][0] = img_channel[i + 1][j - 1]
_8_area[1][0] = img_channel[i][j - 1]
# 不考虑位置
part1, flag1 = division1(_8_area)
# 考虑位置
part2, flag2 = division2(_8_area)
if flag1 == False or flag2 == False:
continue
# 处理特殊值
sx, sy = special_check(_8_area)
if sx != -1:
result[i - 1 + sx][j - 1 + sy] += 1
# 比较
for k in range(8):
if part1[k] != part2[k]:
x, y = _1d_2_2d(k)
result[i - 1 + x][j - 1 + y] += 1
return result


"""
# 不考虑缩小二分之一图像
def mark(pixel_channel):
for i in range(pixel_channel.row):
for j in range(pixel_channel.col):
if pixel_channel.noise[i][j] >= threshold:
pixel_channel.channel[i][j] = 0
return pixel_channel
"""


# 找到最合适的值
def find_best(pixel_channel, x, y):
p = pixel_channel.channel[x][y]
# 建立领域列表
neighborhood = []
if pixel_channel.row > x - 1 >= 0 and pixel_channel.col > y - 1 >= 0 and pixel_channel.noise[x - 1][
y - 1] < threshold:
neighborhood.append(pixel_channel.channel[x - 1][y - 1])
if pixel_channel.row > x - 1 >= 0 and pixel_channel.col > y >= 0 and pixel_channel.noise[x - 1][y] < threshold:
neighborhood.append(pixel_channel.channel[x - 1][y])
if pixel_channel.row > x - 1 >= 0 and pixel_channel.col > y + 1 >= 0 and pixel_channel.noise[x - 1][
y + 1] < threshold:
neighborhood.append(pixel_channel.channel[x - 1][y + 1])
if pixel_channel.row > x >= 0 and pixel_channel.col > y + 1 >= 0 and pixel_channel.noise[x][y + 1] < threshold:
neighborhood.append(pixel_channel.channel[x][y + 1])
if pixel_channel.row > x + 1 >= 0 and pixel_channel.col > y + 1 >= 0 and pixel_channel.noise[x + 1][
y + 1] < threshold:
neighborhood.append(pixel_channel.channel[x + 1][y + 1])
if pixel_channel.row > x + 1 >= 0 and pixel_channel.col > y >= 0 and pixel_channel.noise[x + 1][y] < threshold:
neighborhood.append(pixel_channel.channel[x + 1][y])
if pixel_channel.row > x + 1 >= 0 and pixel_channel.col > y - 1 >= 0 and pixel_channel.noise[x + 1][
y - 1] < threshold:
neighborhood.append(pixel_channel.channel[x + 1][y - 1])
if pixel_channel.row > x >= 0 and pixel_channel.col > y - 1 >= 0 and pixel_channel.noise[x][y - 1] < threshold:
neighborhood.append(pixel_channel.channel[x][y - 1])

# 搜索与给定点最接近的非噪声点
# 建立差值列表
d = []
for i in range(len(neighborhood)):
d.append(abs(int(neighborhood[i]) - int(p)))
if len(d) == 0:
return p
min_index = d.index(min(d))

return neighborhood[min_index]


# 考虑缩小二分之一图像
def repair(pixel_channel, half_channel):
# 左上角
for i in range(half_channel[0].row):
for j in range(half_channel[0].col):
if half_channel[0].noise[i][j] >= threshold:
pixel_channel.noise[i * 2][j * 2] += half_channel[0].noise[i][j]

# 右上角
for i in range(half_channel[1].row):
for j in range(half_channel[1].col):
if half_channel[1].noise[i][j] >= threshold:
pixel_channel.noise[i * 2][j * 2 + 1] += half_channel[1].noise[i][j]

# 左下角
for i in range(half_channel[2].row):
for j in range(half_channel[2].col):
if half_channel[2].noise[i][j] >= threshold:
pixel_channel.noise[i * 2 + 1][j * 2] += half_channel[2].noise[i][j]

# 右下角
for i in range(half_channel[3].row):
for j in range(half_channel[3].col):
if half_channel[3].noise[i][j] >= threshold:
pixel_channel.noise[i * 2 + 1][j * 2 + 1] += half_channel[3].noise[i][j]

for i in range(pixel_channel.row):
for j in range(pixel_channel.col):
if pixel_channel.noise[i][j] >= threshold:
pixel_channel.channel[i][j] = find_best(pixel_channel, i, j)

return pixel_channel


def main():
# 图像地址
img_address = "img_noise.png"
# 以BGR方式读入图像
img = cv.imread(img_address, 1)
cv.imshow("img_noise.png", img)
# 通道分离
channel_b, channel_g, channel_r = cv.split(img)
# 建立像素通道类
b = create_pixel_channel(channel_b)
g = create_pixel_channel(channel_g)
r = create_pixel_channel(channel_r)
# 缩小二分之一
half_b = [half_1(b), half_2(b), half_3(b), half_4(b)]
half_g = [half_1(g), half_2(g), half_3(g), half_4(g)]
half_r = [half_1(r), half_2(r), half_3(r), half_4(r)]

"""
fp = open('half_b.noise.csv', 'w')
for i in range(half_b.row):
for j in range(half_b.col):
print(half_b.noise[i][j], file=fp, end='')
print(",", file=fp, end='')
print("", file=fp)

fp = open('half_b.pixel.csv', 'w')
for i in range(half_b.row):
for j in range(half_b.col):
print(half_b.channel[i][j], file=fp, end='')
print(",", file=fp, end='')
print("", file=fp)
"""

# 不考虑二分之一图像
# new_img = cv.merge((mark(b).channel, mark(g).channel, mark(r).channel))

# 考虑二分之一图像
new_img = cv.merge((repair(b, half_b).channel, repair(g, half_g).channel, repair(r, half_r).channel))

cv.imwrite("denoised_img.png", new_img)
cv.imshow("denoised_img.png", new_img)
cv.waitKey()
cv.destroyAllWindows()


if __name__ == '__main__':
main()

结果

1

可以看到,噪声点全部被消除