概述

尝试使用新的划分方法查找噪声点

并将噪声点像素值标记为0(对单通道而言)

效果

1

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# python3.8
# utf-8
"""
1.找出噪声点:
新划分方法
标记次数
2.修改
修改为0
"""
import cv2 as cv
import numpy as np

threshold = 1


class PixelChannel:
def __init__(self, channel, noise, row, col):
self.noise = noise
self.channel = channel
self.row = row
self.col = col


class Part:
def __init__(self, x, y, area):
self.x = x
self.y = y
self.area = area


# 建立像素通道类
def create_pixel_channel(img_channel):
(row, col) = img_channel.shape
result = PixelChannel(img_channel, noise_check(img_channel), row, col)
return result


# 一维数组映射到二维
def _1d_2_2d(x):
if x == 0:
return 0, 0
elif x == 1:
return 0, 1
elif x == 2:
return 0, 2
elif x == 3:
return 1, 2
elif x == 4:
return 2, 2
elif x == 5:
return 2, 1
elif x == 6:
return 2, 0
elif x == 7:
return 1, 0

"""
# 特殊值处理
def special_check(_8area):
p = [_8area[0][0], _8area[0][1], _8area[0][2], _8area[1][2],
_8area[2][2], _8area[2][1], _8area[2][0], _8area[1][0]]
p_sum = int(p[0]) + int(p[1]) + int(p[2]) + int(p[3]) + int(p[4]) + int(p[5]) + int(p[6]) + int(p[7])
max_differ = 0
max_index = 0
for i in range(8):
if abs(int(p[i]) - (p_sum - int(p[i])) // 7) > max_differ:
max_differ = abs(int(p[i]) - (p_sum - int(p[i])) // 7)
max_index = i
if max_differ > 4:
return _1d_2_2d(max_index)
else:
return -1, -1
"""


def division1(_8area):
result = [0] * 8
p1 = [_8area[0][0], _8area[0][1], _8area[0][2], _8area[1][2], _8area[2][2], _8area[2][1], _8area[2][0],
_8area[1][0]]
p = sorted(p1)
q = [abs(int(p[0]) - int(p[1])), abs(int(p[1]) - int(p[2])), abs(int(p[2]) - int(p[3])), abs(int(p[3]) - int(p[4])),
abs(int(p[4]) - int(p[5])), abs(int(p[5]) - int(p[6])), abs(int(p[6]) - int(p[7]))]
# 判断区分度
if max(q) < 10:
return result, False
max_index = q.index(max(q))
for i in range(0, max_index + 1):
result[p1.index(p[i])] = 1
for i in range(8):
if result[i] != 1:
result[i] = 2

return result, True


# 去除del_num号元素,del_num:0~7
def division2(_8area, del_num):
r = [0] * 8
p1 = [_8area[0][0], _8area[0][1], _8area[0][2], _8area[1][2], _8area[2][2], _8area[2][1], _8area[2][0],
_8area[1][0]]
p2 = []
for i in range(8):
if i == del_num:
continue
p2.append(p1[i])
result = [0] * 8

p = sorted(p2)
q = [abs(int(p[0]) - int(p[1])), abs(int(p[1]) - int(p[2])), abs(int(p[2]) - int(p[3])), abs(int(p[3]) - int(p[4])),
abs(int(p[4]) - int(p[5])), abs(int(p[5]) - int(p[6]))]
# 判断区分度
if max(q) < 10:
return result, False
max_index = q.index(max(q))
for i in range(0, max_index + 1):
result[p1.index(p[i])] = 1
for i in range(8):
if result[i] != 1:
result[i] = 2
result[del_num] = 0
return result, True


def noise_check(img_channel):
(row, col) = img_channel.shape
result = [[0] * col for i in range(row)]
for i in range(1, row - 1):
for j in range(1, col - 1):
# _8_area = type(img_channel)
_8_area = [[0] * 3 for i in range(3)]
_8_area[0][0] = img_channel[i - 1][j - 1]
_8_area[0][1] = img_channel[i - 1][j]
_8_area[0][2] = img_channel[i - 1][j + 1]
_8_area[1][2] = img_channel[i][j + 1]
_8_area[2][2] = img_channel[i + 1][j + 1]
_8_area[2][1] = img_channel[i + 1][j]
_8_area[2][0] = img_channel[i + 1][j - 1]
_8_area[1][0] = img_channel[i][j - 1]
# 不考虑位置
part1, flag1 = division1(_8_area)
# 如果在不去除点的情况下,不需要划分,那么就跳过
if not flag1:
continue

part2 = []
for k in range(7):
cnt = 0
part2, flag2 = division2(_8_area, k)
if not flag2:
if k == 0 or k == 7:
cnt += 1
else:
continue
# 比较

for m in range(8):
if part2[m] != 0 and part1[m] != part2[m]:
cnt += 1
if cnt >= 1:
x, y = _1d_2_2d(k)
result[i - 1 + x][j - 1 + y] += 1
# 处理特殊值
# sx, sy = special_check(_8_area)
# if sx != -1:
# result[i - 1 + sx][j - 1 + sy] += 1

return result


# 不考虑缩小二分之一图像
def mark(pixel_channel):
for i in range(pixel_channel.row):
for j in range(pixel_channel.col):
if pixel_channel.noise[i][j] >= threshold:
pixel_channel.channel[i][j] = 0
return pixel_channel


# 找到最合适的值
def find_best(pixel_channel, x, y):
p = pixel_channel.channel[x][y]
# 建立领域列表
neighborhood = []
if pixel_channel.row > x - 1 >= 0 and pixel_channel.col > y - 1 >= 0 and pixel_channel.noise[x - 1][
y - 1] < threshold:
neighborhood.append(pixel_channel.channel[x - 1][y - 1])
if pixel_channel.row > x - 1 >= 0 and pixel_channel.col > y >= 0 and pixel_channel.noise[x - 1][y] < threshold:
neighborhood.append(pixel_channel.channel[x - 1][y])
if pixel_channel.row > x - 1 >= 0 and pixel_channel.col > y + 1 >= 0 and pixel_channel.noise[x - 1][
y + 1] < threshold:
neighborhood.append(pixel_channel.channel[x - 1][y + 1])
if pixel_channel.row > x >= 0 and pixel_channel.col > y + 1 >= 0 and pixel_channel.noise[x][y + 1] < threshold:
neighborhood.append(pixel_channel.channel[x][y + 1])
if pixel_channel.row > x + 1 >= 0 and pixel_channel.col > y + 1 >= 0 and pixel_channel.noise[x + 1][
y + 1] < threshold:
neighborhood.append(pixel_channel.channel[x + 1][y + 1])
if pixel_channel.row > x + 1 >= 0 and pixel_channel.col > y >= 0 and pixel_channel.noise[x + 1][y] < threshold:
neighborhood.append(pixel_channel.channel[x + 1][y])
if pixel_channel.row > x + 1 >= 0 and pixel_channel.col > y - 1 >= 0 and pixel_channel.noise[x + 1][
y - 1] < threshold:
neighborhood.append(pixel_channel.channel[x + 1][y - 1])
if pixel_channel.row > x >= 0 and pixel_channel.col > y - 1 >= 0 and pixel_channel.noise[x][y - 1] < threshold:
neighborhood.append(pixel_channel.channel[x][y - 1])

# 搜索与给定点最接近的非噪声点
# 建立差值列表
d = []
for i in range(len(neighborhood)):
d.append(abs(int(neighborhood[i]) - int(p)))
if len(d) == 0:
return p
min_index = d.index(min(d))

return neighborhood[min_index]


# 考虑缩小二分之一图像
def repair(pixel_channel, half_channel):
# 左上角
for i in range(half_channel[0].row):
for j in range(half_channel[0].col):
if half_channel[0].noise[i][j] >= threshold:
pixel_channel.noise[i * 2][j * 2] += half_channel[0].noise[i][j]

# 右上角
for i in range(half_channel[1].row):
for j in range(half_channel[1].col):
if half_channel[1].noise[i][j] >= threshold:
pixel_channel.noise[i * 2][j * 2 + 1] += half_channel[1].noise[i][j]

# 左下角
for i in range(half_channel[2].row):
for j in range(half_channel[2].col):
if half_channel[2].noise[i][j] >= threshold:
pixel_channel.noise[i * 2 + 1][j * 2] += half_channel[2].noise[i][j]

# 右下角
for i in range(half_channel[3].row):
for j in range(half_channel[3].col):
if half_channel[3].noise[i][j] >= threshold:
pixel_channel.noise[i * 2 + 1][j * 2 + 1] += half_channel[3].noise[i][j]

for i in range(pixel_channel.row):
for j in range(pixel_channel.col):
if pixel_channel.noise[i][j] >= threshold:
pixel_channel.channel[i][j] = find_best(pixel_channel, i, j)

return pixel_channel


def main():
# 图像地址
img_address = "img_noise.png"
# 以BGR方式读入图像
img = cv.imread(img_address, 1)
cv.imshow("img_noise.png", img)
# 通道分离
channel_b, channel_g, channel_r = cv.split(img)
# 建立像素通道类
b = create_pixel_channel(channel_b)
g = create_pixel_channel(channel_g)
r = create_pixel_channel(channel_r)
# 缩小二分之一
# half_b = [half_1(b), half_2(b), half_3(b), half_4(b)]
# half_g = [half_1(g), half_2(g), half_3(g), half_4(g)]
# half_r = [half_1(r), half_2(r), half_3(r), half_4(r)]

fp = open('b.noise.csv', 'w')
for i in range(b.row):
for j in range(b.col):
print(b.noise[i][j], file=fp, end='')
print(",", file=fp, end='')
print("", file=fp)

fp = open('b.pixel.csv', 'w')
for i in range(b.row):
for j in range(b.col):
print(b.channel[i][j], file=fp, end='')
print(",", file=fp, end='')
print("", file=fp)

# 不考虑二分之一图像
new_img = cv.merge((mark(b).channel, mark(g).channel, mark(r).channel))

# 考虑二分之一图像
# new_img = cv.merge((repair(b, half_b).channel, repair(g, half_g).channel, repair(r, half_r).channel))

cv.imwrite("denoised_img.png", new_img)
cv.imshow("denoised_img.png", new_img)
cv.waitKey()
cv.destroyAllWindows()


if __name__ == '__main__':
main()