1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
|
import cv2 as cv import numpy as np
def get_unit_similarity(a_4, b_4, k): result = 0 for i in range(4): result = result + (abs(int(a_4[i]) - int(b_4[i]))) ** k result = result ** (1/k) return int(result)
def input_flag(flag, x, y, similarity): for i in range(4): if flag[x][y][i] == 0: flag[x][y][i] = similarity break return flag
def get_channels_similarity(channel, k, rank): row, col = channel.shape flag = np.zeros((row - 1, col - 1, 4)) result = np.zeros((row - 1, col - 1)) for i in range(row - 2): for j in range(col - 2): array = [channel[i][j], channel[i][j + 1], channel[i + 1][j + 1], channel[i + 1][j]] r_array = [channel[i][j + 1], channel[i + 1][j + 1], channel[i][j + 2], channel[i + 1][j + 2]] d_array = [channel[i + 1][j + 1], channel[i + 1][j], channel[i + 2][j + 1], channel[i + 2][j]] r_similarity = get_unit_similarity(array, r_array, k) d_similarity = get_unit_similarity(array, d_array, k) flag = input_flag(flag, i, j, r_similarity) flag = input_flag(flag, i, j, d_similarity) flag = input_flag(flag, i+1, j, r_similarity) flag = input_flag(flag, i, j+1, d_similarity) for i in range(row-2): for j in range(col-2): flag4 = sorted(flag[i][j]) result[i][j] = flag4[4-rank] return result
def get_qufendu(array): return int(max(array)) - int(min(array))
def get_channels_qufendu(channel): row, col = channel.shape result = np.zeros((row - 1, col - 1)) for i in range(row-1): for j in range(col-1): array = [channel[i][j], channel[i][j + 1], channel[i + 1][j + 1], channel[i + 1][j]] qufendu = get_qufendu(array) result[i][j] = qufendu return result
def is_max_qufendu(qufendu, x, y): row, col = qufendu.shape mid_qufendu = qufendu[x][y] a = [] for i in range(x-1, x+2): for j in range(y-1, y+2): if row-1 >= i >= 0 and col-1 >= j >= 0 and qufendu[i][j]: a.append(abs(int(mid_qufendu) - int(qufendu[i][j]))) if len(a) > 0 and max(a) >= 20: return True else: return False
def mark(channel, similarity, qufendu): row, col = similarity.shape for i in range(row): for j in range(col): if similarity[i][j] > 50 and qufendu[i][j] > 20: channel[i][j] = 0 else: channel[i][j] = 255 if is_max_qufendu(qufendu, i, j): channel[i][j] = 0 return channel
def mark_similarity(img, k, rank): p = cv.imread(img, 1) b, g, r = cv.split(p) b_similarity = get_channels_similarity(b, k, rank) b_qufendu = get_channels_qufendu(b) b = mark(b, b_similarity, b_qufendu) g_similarity = get_channels_similarity(g, k, rank) g_qufendu = get_channels_qufendu(g) g = mark(g, g_similarity, g_qufendu) r_similarity = get_channels_similarity(r, k, rank) r_qufendu = get_channels_qufendu(r) r = mark(r, r_similarity, r_qufendu) p = cv.merge((b, g, r)) cv.imwrite(img[0:-4] + '_fix_mark.png', p)
if __name__ == '__main__': img_addr = '8068.jpg' mark_similarity(img_addr, 1, 1)
|