概述

1
2
3
4
5
6
7
8
9
10
graph 
A(取3*3的像素点) -->B(视为2*2相邻格子)
B --> C(获得2*2区分度S)
C -->|存在阈值D > S| D(标记为0)
C -->|存在阈值D < S| E(标记为1)
D --> F(对01位置进行分类)
E --> F
F -->|3:1| G(标为蓝色)
F -->|2:2相邻| H(标为绿色)
F -->|2:2对角| I(标为红色)

三种情况分开处理

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# python3.8
# utf-8

import cv2 as cv
import numpy as np


def get_qufendu(array):
qufendu = np.zeros((2, 2))
result = np.zeros((2, 2))
for i in range(2):
for j in range(2):
qufendu[i][j] = max(array[i][j], array[i+1][j], array[i+1][j+1], array[i][j+1]) - min(array[i][j], array[i+1][j], array[i+1][j+1], array[i][j+1])
if qufendu[i][j] > 40:
result[i][j] = 1
return result


def classify_array(array):
a_sum = array[0][0] + array[0][1] + array[1][1] + array[1][0]
if a_sum == 0 or a_sum == 4:
return 0
elif a_sum == 1 or a_sum == 3:
return 1
elif a_sum == 2:
if array[0][0] == array[0][1] or array[0][0] == array[1][0]:
return 2
else:
return 3


def get_channel_flag(channel, channel_flag, k):
row, col, cnt_channel = channel.shape
for i in range(row-2):
for j in range(col-2):
array33 = np.zeros((3, 3))
for x in range(3):
for y in range(3):
array33[x][y] = channel[i+x][j+y][k]
array_flag = get_qufendu(array33)
channel_flag[i+1][j+1][k] = classify_array(array_flag)
return channel, channel_flag


def get_flag(img):
flag = np.zeros(img.shape)
row, col, cnt_channel = img.shape
for k in range(cnt_channel):
img, flag = get_channel_flag(img, flag, k)
return flag


def get_value(pixel, flag):
if flag == 1:
pixel[0] = 255
pixel[1] = 0
pixel[2] = 0
elif flag == 2:
pixel[0] = 0
pixel[1] = 255
pixel[2] = 0
elif flag == 3:
pixel[0] = 0
pixel[1] = 0
pixel[2] = 255
else:
pixel[0] = 255
pixel[1] = 255
pixel[2] = 255
return pixel


def mark(img, flag):
row, col, cnt_channel = img.shape
for i in range(row):
for j in range(col):
if flag[i][j][0] == flag[i][j][1] and flag[i][j][1] == flag[i][j][2]:
img[i][j] = get_value(img[i][j], flag[i][j][0])
return img


def img2three(img):
row, col, channel_cnt = img.shape
img1 = np.zeros((row, col, channel_cnt))
img2 = np.zeros((row, col, channel_cnt))
img3 = np.zeros((row, col, channel_cnt))

for i in range(row):
for j in range(col):
img1[i][j] = [255, 255, 255]
img2[i][j] = [255, 255, 255]
img3[i][j] = [255, 255, 255]

for i in range(row):
for j in range(col):
if img[i][j][0] == 255 and img[i][j][1] == 0 and img[i][j][2] == 0:
img1[i][j] = img[i][j]
elif img[i][j][0] == 0 and img[i][j][1] == 255 and img[i][j][2] == 0:
img2[i][j] = img[i][j]
elif img[i][j][0] == 0 and img[i][j][1] == 0 and img[i][j][2] == 255:
img3[i][j] = img[i][j]
else:
pass

return img1, img2, img3


def main(img):
# print(np.array([255, 0, 0]).any())
p = cv.imread(img, 1)
# b, g, r = cv.split(p)
flag = get_flag(p)
p = mark(p, flag)
cv.imwrite('mark_' + img, p)
img1, img2, img3 = img2three(p)
cv.imwrite('mark1_' + img, img1)
cv.imwrite('mark2_' + img, img2)
cv.imwrite('mark3_' + img, img3)


if __name__ == '__main__':
img_addr = '8068.jpg'
main(img_addr)

image-20220531114124599

image-20220531114052921

image-20220531114102900

image-20220531114109435