Deep image prior修复部分 inpainting的实现
导入库1234567891011121314151617181920212223from __future__ import print_functionimport matplotlib.pyplot as plt%matplotlib inlineimport osos.environ['CUDA_VISIBLE_DEVICES'] = '1'import numpy as npfrom models.resnet import ResNetfrom models.unet import UNetfrom models.skip import skipimport torchimport torch.optimfrom utils.inpainting_utils import *torch.backends.cudnn.enabled = Truetorch.backends.cudnn.benchmark =Truedtype = torch.cuda.FloatTensorPLOT = Trueimsize = -1dim_div_by ...
Deep image prior中flash_no_flash的实现
导入库123456789101112131415161718192021from __future__ import print_functionimport matplotlib.pyplot as plt%matplotlib inlineimport osos.environ['CUDA_VISIBLE_DEVICES'] = '1'import numpy as npfrom models import *import torchimport torch.optimfrom utils.denoising_utils import *from utils.sr_utils import load_LR_HR_imgs_srtorch.backends.cudnn.enabled = Truetorch.backends.cudnn.benchmark =Truedtype = torch.cuda.FloatTensorimsize =-1PLOT = True
加载图片12345678imgs = load_LR_HR_imgs_sr ...
Deep image prior特征反转部分feature_inversion的实现
导入库123456789101112131415161718192021222324252627from __future__ import print_functionimport matplotlib.pyplot as plt%matplotlib inlineimport argparseimport osos.environ['CUDA_VISIBLE_DEVICES'] = '0'import numpy as npfrom models import *import torchimport torch.optimfrom utils.feature_inversion_utils import *from utils.perceptual_loss.perceptual_loss import get_pretrained_netfrom utils.common_utils import *torch.backends.cudnn.enabled = Truetorch.backends.cudnn.benchmark =True ...
BSRGAN的实现
测试代码123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687import os.pathimport loggingimport torchfrom utils import utils_loggerfrom utils import utils_image as utilfrom models.network_rrdbnet import RRDBNet as netdef main(): utils_logger.logger_info('blind_sr_log', log_path='blind_sr_log.log') logger = logging.getLogger('blind_sr_log') testsets = ...
Deep image prior修复部分restoration的实现
导入库123456789101112131415161718192021222324252627from __future__ import print_functionimport matplotlib.pyplot as plt%matplotlib inlineimport os#os.environ['CUDA_VISIBLE_DEVICES'] = '1'import numpy as npfrom models.resnet import ResNetfrom models.unet import UNetfrom models.skip import skipfrom models import get_netimport torchimport torch.optim# from skimage.measure import compare_psnrfrom skimage.metrics import peak_signal_noise_ratio as compare_psnrfrom utils.inpainting_uti ...
Deep image prior降噪部分的实现
项目源码
降噪部分的修改与运行导入所需库12345678910111213141516171819202122232425from __future__ import print_functionimport matplotlib.pyplot as plt%matplotlib inlineimport os#os.environ['CUDA_VISIBLE_DEVICES'] = '3'import numpy as npfrom models import *import torchimport torch.optim# from skimage.measure import compare_psnrfrom skimage.metrics import peak_signal_noise_ratio as compare_psnrfrom utils.denoising_utils import *torch.backends.cudnn.enabled = Truetorch.backends.cudnn.benchmark =True ...
基于深度学习的图像降噪修复——文献调研
基于深度学习的图像降噪修复——文献调研Deep image priorPublished in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Date of Conference: 18-23 June 2018
Date Added to IEEE *Xplore*: 17 December 2018
ISBN Information:
**Electronic ISBN:**978-1-5386-6420-9
**Print on Demand(PoD) ISBN:**978-1-5386-6421-6
ISSN Information:
Electronic ISSN: 2575-7075
Print on Demand(PoD) ISSN: 1063-6919
INSPEC Accession Number: 18326119
DOI: 10.1109/CVPR.2018.00984
Publisher: IEEE
Conference Location: Salt Lake City, ...